Solution Set 7

(a) For the Adams-Bashforth method the ¢ — A relation is
3 1
2 (1 —/\h) —Ah =
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Letting A = 7. and solving for o gives

1
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and 6 = 1arctan L
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then

o, = %:l:rcos@ and o; = %hirsin@

The principal o-root is had by taking the positive sign in the above equations.

(b) For the second order Runge-Kutta method the & — A relation is
1 2
U—l—/\h—§(/\h) =0
Letting A = 7. and solving for o gives
1

where obviously
1
UT21—§h2 and o; = h

See the attached table and plots of the g-roots for the two methods. An abbrieviated version of the
matlab code used to generate the table and plots is included.
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clear;

h = 0:0.05:0.75; % time steps

uc = exp(i*linspace(0,pi/2,100)); h unit circle

a = 1/2 + 3%ixh/4;

b = sqrt(1-9%h.~2/4+i%h)/2;

absigl = at+b; % Adams-Bashforth principal root
absig2 = a-b; % Adams-Bashforth spruious root
rksigl = 1-h."2/2+ixh; s Runge-Kutta principal root

% tabular output

'_h
1}

fopen(’hmw6.tab’,’w’);

[h;real(absigl);imag(absigl) ;abs(absigl);
real(absig2);imag(absig2);abs(absig2) ;
real(rksigl) ;imag(rksigl);abs(rksigl)];
fprintf(f,’%14.2f%11.6f%11.6f%11.65f%11.6f%11.6f%11.6f%411.6f%11.65f%411.6f\n’,ta);

ta



hplots

clf

subplot(1,2,1),plot(uc,’-’) ,hold on,plot(absigl,’rx’),plot(absig2,’g+’);
title(’Second Order Adams-Bashforth Method’);
subplot(1,2,2),plot(uc,’-’),hold on,plot(rksigl,’rx’);

title(’Second Order Runge-Kutta Method’);
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2. For h = 0.2 the real and imaginary parts of the principal o-roots for the second order Adams-
Bashforth and second order Runge-Kutta methods are, respectively,

o, = 0.979807, o; = 0.202104
o, = 0.980000, o; = 0.200000

(a) After N time steps, the global error in amplitude for the biconvection model is given as

Ery=1- <UZ—|—UZ2)§

For the second order Adams-Bashforth and second order Runge-Kutta methods these ampli-
tude errors after 100 time steps are, respectively,

Ery = —0.0443408
Ery = —0.0201973

(b) After N time steps, the global error in phase for the biconvection model is given as

Er,=N [wh — arctan (ﬂ)]

Oy

For the second order Adams-Bashforth and second order Runge-Kutta methods these phase
errors for w = 1 after 100 time steps are, respectively,

FEr, = —0.341657
Er, = —-0.131710

(Don’t bother doing a Taylor series expansion of the arctan term—here a numerical value is
wanted, not the time step size dependence.)



The second order Runge-Kutta method has lower amplitude and phase errors, so for the pure
convection problem it is the better method.

3. For the PDE

ot +a(?$_l/8$2

The following difference schemes are used for the spacial derivatives

1
(0pu); = Ao (wjp1 — uj)
1
(Opzu); = A2 (wjpr — 2uj + uj_1)

(a) In banded matrix operator notation the resulting ODE is

du v a v v a
M_op( L, L 2 Y be
di (A:ﬂ'm Az’ Az? Am) u + (be)

The eigenvalues for a simple tridiagonal matrix with constant scalar elements along each di-
agonal are given in equation (B1.2) of the lecture notes. For this problem the eigenvalues
are

A = <= = 25 42 V<V i) (mT) =1.2,....M
" Az Az? AzZ \Az2  Az) " M+1 m=1,2Z...;

(b) A method is inherently stable when R(A,,) < 0 for all m. For this method, this leads to the

following stability constraint
v
a<2—
- Az

4. Substituting u = e®*+*7 into the Lax-Wendroff scheme given by

wpth =l - %Cn (’“?ﬂ - ‘“?—1) t %Cﬁ (“yﬂ = 2uj + ‘“?—1)

yields the amplification factor o = e*8!

o=1— %Cn (eikAx _ e—ikAx) i %Cﬁ (eikAx _924 e—ikAx)
=1-1iC,sinkAz 4+ C*(coskAz — 1)
It follows that
|o]? = 14+ 2C%(coskAz — 1) + ClcoskAz — 1)? + C2sin? kAx
=14+ C2(C2? - 1) (coskAz — 1)?
and stability requires that |o| < 1 so that the condition on C,, becomes
C2(C2-1)(coskAz —1)2 <0

C2<1



